Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells.

نویسندگان

  • Philip J W Hands
  • Svetlana A Tatarkova
  • Andrew K Kirby
  • Gordon D Love
چکیده

We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 mum and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 mum. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement the reflection coefficient of Waveguide-Fed Phased-Array Antenna utilizing Liquid Crystal

Abstract— This work investigates the improvement of the active reflection coefficient of waveguide-fed phased-array antenna using liquid crystal layers. The anisotropy properties of liquid crystal layer can be employed to eliminate blind scan angle and improve the wide angle impedance matching of the waveguide-fed phased array antennas. The authors have expressed the modal analysis of the waveg...

متن کامل

Towards total photonic control of complex-shaped colloids by vortex beams.

We demonstrate optical trapping and orientational control over colloidal particles having complex shapes in an anisotropic host fluid using a dynamic holographic optical tweezers system. Interactions between a colloidal particle and the toroidal intensity distributions of focused Laguerre-Gaussian beams allow for stable optical tweezing and provide a tunable tilt of the particle out of the foca...

متن کامل

Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices

In this paper, Using a 2D photonic crystal and a novel square ring resonator,several compact and simple structures have been introduced in the present paper toconstruct optical add/drop filters and multi-channel filter. The difference structures hasbeen designed and simulated by using the proposed square ring resonator and differentdropping waveguides. To do analyses, th...

متن کامل

Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control.

Electrokinetic tweezing in three dimensions is achieved for the first time using a multi-layer microfluidic device, a model-based control algorithm, and a 3D imaging algorithm connected in a feedback loop. Here we demonstrate steering of microparticles along 3D trajectories and trapping in all three dimensions with accuracy as good as 1 μm.

متن کامل

Strong Optical Filed Intensity Improvement Introducing InGaAsP Quantum Wells in InP Nanocavity

This paper presents the optical characteristics of a quantum well doped InP nanocavity.The resonance wavelength of the nanocavity and the optical field intensity is calculated before and after presence of the quantum wells. The resulting huge filed intensity of about 1.2×108 respect to the incident field is the effect of quantum wells placed in vicinity of center of nanocavity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 14 10  شماره 

صفحات  -

تاریخ انتشار 2006